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Isosteric replacement of the a,b-unsaturated amide at the C-7 position of indoles with a diverse set of
five-membered amino-heterocycles including isoxazole, oxadiazole, thiadiazole and pyrazole followed
by subsequent derivatization of the heterocyclic amino group to yield amides, sulfonamides and phos-
phoramides is described. Distinctive features of these procedures include the versatility and robust nat-
ure of the synthetic steps along with the high yields of the targeted molecules.

� 2009 Elsevier Ltd. All rights reserved.
Recently, we have reported antagonists of the human EP3 recep-
tor as novel platelet aggregation inhibitors that do not extend the
bleeding time1 and thus are of great interest as potential anti-
thrombotic agents. These potent, isoform selective hEP3 antago-
nists, based on the 1,7-indole disubstituted series 1 (Scheme 1),
showed an excellent activity in platelet aggregation assays.1,2

These analogues contain the acylsulfonamide functionality as a
key pharmacophoric feature. Based on both extensive SAR3 data
and our modelling studies4 we sought to explore heterocyclic isos-
teres for the –C@CH–CO– fragment in 1. This modification was ex-
pected to affect the topology, steric and electronic features of the
sulfonamide bearing appendage, as shown by the general structure
2.5 In particular, we were interested in preparing 1-alkylaryl 7-het-
erocyclic indole derivatives 2 as a diverse set of EP3 receptor antag-
onist chemotypes. However, examination of the literature revealed
lack of a general approach to indoles featuring five-membered
amino-heterocycles at C-7 position.6 In this report, we describe a
ll rights reserved.
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cheme 1. Heterocycles as isostere
versatile and flexible approach to a diverse set of five-membered
amino-heterocycles 3 from the 1,7-disubstituted indole derivatives
4 (Scheme 2). A subsequent derivatization of the amino group in 3
is expected to furnish the targeted substituted indoles 2.

Formation of 7-carbomethoxy indole from 7-bromoindole by
metalation with n-BuLi, followed by reaction with methyl chloro-
formate has been reported earlier.7 N-Alkylation of indole 68 pro-
vided 7-bromo indole 7 (Scheme 3). Treatment of 7 with n-BuLi
(1.5 equiv) followed by the addition of ethyl chloroformate
(2.0 equiv) afforded the desired ester derivatives 4 (Table 1) in
good to excellent isolated yields (76–90%) and purity.9 These key
intermediates were subsequently converted into a diverse set of
heterocycles as described below (Scheme 4).

Reaction of 4 with hydrazine provided the corresponding
hydrazides 8 in 70–90% yield. Subsequent exposure of 8 to cyano-
gen bromide in aqueous p-dioxane in the presence of sodium or
potassium bicarbonate furnished 2-amino-1,3,4-oxadiazoles 9
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X,Y,Z heteroatoms (N, O or S) or X = CH
W = H, CO, SO2, PO(R)

) (3)

s for a,b-unsaturated amides.

http://dx.doi.org/10.1016/j.tetlet.2009.11.073
mailto:jsingh@decode.com
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet


Ar1
N

F

COOR
N
H

Br

F

Ar1

X

N

Y

NH2

z

F

(3) (4) R = Et
(5) R =H

(6)

Scheme 2. Retrosynthetic analysis.

Table 1
Yields of 7-substituted indoles from (6)

7a 7b 7c 7d 7e
64% 95% 90% 93% 80%

4a 4b 4c 4d 4e
90% 85% 90% 83% 76%
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(53–90% overall yields). Similar to a reported procedure,10 the
hydrolysis of 4 followed by the reaction of resultant acid 5 with
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Scheme 3. Synthesis of C7-indole esters (4). Reagents and conditions: (i) (a) NaH,

N
Ar1

F

O OEt

N
Ar1

F

O

N

Ar1

NH2
N

N

F

O

F

O

F

O

F

O

Ar1

NH2
N

N

F

N

F

N

(4)

(13)

(14)

(a)

(c)

(e
(g)

(h)

(i )

+

(14)
 (h), (j)

(17)

Scheme 4. Reagents and conditions: (a) NH2NH2, MTBE, 120 �C, 12 h; (b) BrCN/Na
NH2C(S)NH2NH2, POCl3, 120 �C, 30 min; (e) (i) (COCl)2/DMF cat, THF, rt, 5 min; (ii) cyan
CH3CN, THF, �78 �C?rt, 1 h; (h) NH2OH�HCl or (NH2OH)2SO4, NaOH, H2O–EtOH, (2:3, v
thiosemicarbazide in the presence of POCl3, provided 2-amino-
1,3,4-thiadiazoles 10.

The carboxylic acid 5a was converted to the acid chloride which
was immediately converted to the 7-carboxylic acid iminomethy-
leneamide, 11a (Scheme 4).11,12 This key intermediate was subse-
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DMF, �10 �C, (b) Ar1-CH2-Br; (ii) (a) n-BuLi, Et2O, (b) EtOCOCl, �78 �C–rt, 1 h.
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HCO3, p-dioxane-water, rt, 2 h; (c) 2 N NaOH, MeOH/THF (1:1), 75 �C, 1 h; (d)
oamide, 2 N NaOH, THF–H2O, rt, 5 min; (f) NH2OH, pyridine, 60 �C, 4 h; (g) nBuLi,

/v), reflux, 17 h; (j) 36% aq HCl, 90 �C, 2 h; (k) (l) NH2NHCH3, HOAc, iPrOH, heat.



Table 2
Yields for individual intermediates corresponding to the steps described in Scheme 4

Amine heterocycle For Ar1 substituents, see legend in Scheme 3

a b c d e

5 95 94 94
8 75 86 79
9 79 53 62

10 47 52
11 68
12 44
13 93 75 80
14 39 29* 49** 37
15 11 17
17 30

* From chromatographic separation.
** Following acid hydrolysis step prior to purification.
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Scheme 5. Derivatization of the amino-heterocycle.
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quently reacted with two equivalents of hydroxylamine in pyridine
to yield the 1,2,4-oxadiazole 12a.

A number of methods for the preparation of amino-5-aryl isox-
azoles starting from alkyl propiolates, b-ketonitriles or amidoxime
have been reported.13,14 Due to the accessibility and versatility of
b-ketonitriles 13 we used these in our synthetic sequence. Cycliza-
tion of b-ketonitriles with hydroxylamine is known to be non-reg-
ioselective, leading to the formation of a mixture of 3-amino- and
5-amino-isoxazoles.15 b-Ketonitriles 13 were readily accessible in
75–80% yields by reacting the respective carbanion of acetonitrile
with esters 4. Subsequent reaction of 13 with hydroxylamine led
to the regioisomeric isoxazole derivatives 14 and 15. Alternatively,
reaction of b-ketonitrile 13 with hydroxylamine under basic condi-
tions followed by hydrolytic ring opening of the acid labile 5-ami-
no-isoxazole isomer with concentrated HCl provided 3-amino-
Table 3
Heterocyclic amides (A), sulfonamides (B) and phosphoramides (C)

Compound X Y Z W Ar1

18 O N N CO 2,4-Dichloro ph
19 O N N CO 2,4-Dichloro ph
20 O N N CO 2,4-Dichloro ph
21 O N N CO 2,4-Dichloro ph
22 O N N CO 2,4-Dichloro ph
23 O N N CO 2,4-Dichloro ph
24 O N N CO 2,4-Dichloro ph
25 O N N CO 2,4-Dichloro ph
26 O N N CO 2,4-Dichloro ph
27 O N N SO2 2,4-Dichloro ph
28 O N N SO2 2,4-Dichloro ph
29 O N N SO2 2,4-Dichloro ph
30 O N N SO2 2,4-Dichloro ph
31 O N N SO2 2,4-Dichloro ph
32 O N N PO 2,4-Dichloro ph
33 O N N PO 2,4-Dichloro ph
34 N O N SO2 2,4-Dichloro ph
35 CH O N SO2 3,4-Difluoro phe
36 CH O N SO2 3-Methoxy phen
37 CH O N SO2 2,3-Dihydro-ben
38 CH O N SO2 2,4-Dichloro ph
39 CH O N SO2 2,4-Dichloro ph
40 CH O N SO2 2,4-Dichloro ph
41 CH O N SO2 2,4-Dichloro ph
42 CH O N SO2 3,4-Difluoro phe
43 CH O N SO2 3,4-Difluoro phe
44 CH O N SO2 3,4-Difluoro phe
45 CH O N SO2 2-Naphthyl
46 CH O N SO2 2-Naphthyl
47 CH O N SO2 2-Naphthyl
48 CH O N SO2 2-Naphthyl
49 CH N O SO2 3,4-Difluoro phe
50 CH N-Me N SO2 3,4-Difluoro phe
51 CH N-Me N SO2 3,4-Difluoro phe

The unoptimized yields shown are from the corresponding amine.
isoxazoles 14a–c.16 Reaction of b-ketonitrile 13a with hydroxyl-
amine under basic conditions (EtOH/H2O, 1:1, v/v, 80 �C, 10 h), pro-
vided 14a and 15a as major products along with a small amount
(�10%) of the amidoxime intermediate 16a. Upon treatment with
aqueous HCl in EtOH/H2O, 16a cyclized to result in 14a in �75%
isolated yield. Similarly, 13b and 13c were converted to 14b and
14c, respectively, except the initial products following reaction
with hydroxyl amine were treated with aq HCl before isolation of
the final products, 14b and 14c in yields reported in Table 2. The
structure of 3-amino-isoxazole 14a was unequivocally confirmed
by a single crystal X-ray analysis.5 Alternatively, the reaction of
b-ketonitrile 13b with methyl hydrazine afforded 3-amino pyra-
zole 17b in 30% yield. Yields for the representative heterocyclic
intermediates featured on Scheme 4 are summarized in Table 2.

A diverse set of amino heterocyclic intermediates (9, 10, 12, 14,
15 and 17) were subsequently reacted with a variety of aryl and
heteroaryl acyl chlorides, sulfonyl chlorides and phosphoryl chlo-
rides to provide the corresponding amide, sulfonamide and phos-
phoramide derivatives, respectively, (Scheme 5). Generally, the
amides and phosphoramides were obtained in good to excellent
Ar2 Yield (%)

enyl CF3 90
enyl 4-Fluoro phenyl 55
enyl Isoxazol-5yl 34
enyl 3,5-Dichloro phenyl 37
enyl 3,4-Difluoro phenyl 57
enyl 2,4-Difluoro phenyl 41
enyl 2,4-Dichloro phenyl 74
enyl 5-[2,2-Difluoro-benzo[1,3]dioxole] 35
enyl 2-Furanyl 55
enyl CH3 26
enyl 2,4,5-Trifluoro phenyl 17
enyl 4,5-Dichloro thiophenyl 27
enyl 3,4-Dichloro phenyl 17
enyl 3,4-Difluoro phenyl 18
enyl Phenyl 49
enyl 2,4-Dichloro phenoxy 25
enyl 4,5-Dichloro thiophenyl 10
nyl 4,5-Dichloro thiophenyl 18
yl 3,4-Difluoro phenyl 22
zo[1,4]dioxan-6-yl 3,4-Difluoro phenyl 10

enyl 2,4.5-Trifluoro phenyl 27
enyl 4,5-Dichloro thiophenyl 35
enyl 3,4-Dichloro phenyl 43
enyl 3,4-Difluoro phenyl 46
nyl 2,4.5-Trifluoro phenyl 16
nyl 2,4,5-Trifluoro phenyl 16
nyl 3,4-Difluoro phenyl 44

2,4,5-Trifluoro phenyl 19
4,5-Dichloro thiophenyl 33
3,4-Dchloro phenyl 33
3,4-Difluoro phenyl 24

nyl CH3 36
nyl CH3 89
nyl 4,5-Dichloro thienyl 33
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yields (50–90%), while reactions with substituted phenyl and het-
erocyclic sulfonyl chlorides provided poor to modest yield of the
targeted acyl sulfonamides (typically 10–50%).

The flexibility and general versatility of the synthetic proce-
dures described above are further demonstrated by the prepara-
tion of a diversity of 7-substituted indoles (Table 3).

In summary, versatile, robust and generally high-yielding reac-
tion sequences have been described for the elaboration of 7-car-
boxylate /carboxylic acid substituents of indoles to provide a
diverse set of five-membered amino-heterocycles.17 The resulting
amines were further derivatized to furnish the respective amide,
sulfonamide and phosphoramide derivatives 18–51. Several deriv-
atives showed 1–5 lM activity in the functional rat platelet aggre-
gation assay prompting further evaluation of these lead candidates.
Details of their biological evaluation will be reported elsewhere.5
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CDCl3) d 2.32 (s, 3H), 5.05 (s, 2H), 6.24 (d, J = 8.0 Hz, 1H), 6.34 (s, 1H), 6.90 (s,
1H), 6.97 (dd, J = 8.8, 2.8 Hz, 1H), 7.03 (dd, J = 8.8, 2.0 Hz, 1H), 7.3 (d, J = 2.0 Hz,
1H), 7.41 (dd, J = 8.8, 2.8 Hz, 1H), 7.45 (s,1H), 7.55 (br s, 1H). MS(ESI�) m/z: 604
(M�1). HPLC (Phenomenex Prodigy C18 column, 4.6 � 150 mm, 5 lm, 254 nm)
eluted using a gradient elution 95/5 to 5/95 A/B over 20 min at a flow rate of
1.0 mL/min methanol) = 99.4%.
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